Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering.
نویسندگان
چکیده
An abundant cell source is the cornerstone of most tissue engineering strategies, but extracting cells from the knee meniscus is hindered by its dense fibrocartilaginous matrix. Identifying a method to efficiently isolate meniscus cells is important, as it can reduce the cost and effort required to perform meniscus engineering research. In this study, six enzymatic digestion regimens used for cartilaginous cell isolation were used to isolate cells from the outer, middle, and inner regions of the bovine knee meniscus. Each regimen in each region was assessed in terms of cell yield, impact on cell phenotype, and cytotoxicity. All digestion regimens caused an overall upregulation of cartilage-specific genes Sox9, collagen type I (Col 1), collagen type II (Col 2), cartilage oligomeric matrix protein, and aggrecan (AGC) in cells from all meniscus regions, but was highest for cells isolated using 1075 U/mL of collagenase for 3 h (high collagenase). In response to isolation, outer meniscus cells showed highest upregulation of Sox9 and Col 1 genes, whereas greatest upregulation for middle meniscus cells was seen in Col 1 expression, and Col 2 expression for inner cells. Cell yield was highest in all regions when subjected to 45 min of 61 U/mL pronase followed by 3 h of 1075 U/mL collagenase (pronase/collagenase [P/C]) digestion regimen (outer: 6.57±0.37, middle: 12.77±1.41, inner: 22.17±1.47×10(6) cells/g tissue). The second highest cell yield was achieved using the low collagenase (LC) digestion regimen that applied 433 U/mL of collagenase for 18 h (outer: 1.95±0.54, middle: 3.3±4.4, inner: 6.06±2.44×10(6) cells/g tissue). Cytotoxicity analysis showed higher cell death in the LC group compared with the P/C group. Self-assembled constructs formed from LC-isolated cells were less dense than constructs formed from P/C-isolated cells, and P/C constructs showed higher glycosaminoglycan content and compressive moduli than LC constructs. All isolation methods tested resulted in similar phenotypic changes in meniscus cells from each region. These results indicate that, compared with other common isolation protocols, the P/C isolation method is able to more efficiently isolate meniscus cells from all regions that can produce tissue engineered constructs.
منابع مشابه
Different isolation methods of dental pulp stem cells
Considering the ease of isolation and high expansion potential of pulp stem/progenitor cells isolated from wisdom and primary teeth they have been implicated as the most reliable autologous cell source in dental tissue engineering. Meanwhile, different isolation methods have remarkable impacts on the expansion potential of adult stem cells. In enzymatic digestion method extracted teeth as denta...
متن کاملEffects of agarose mould compliance and surface roughness on self-assembled meniscus-shaped constructs.
The meniscus is a fibrocartilaginous tissue that is critically important to the loading patterns within the knee joint. If the meniscus structure is compromised, there is little chance of healing, due to limited vascularity in the inner portions of the tissue. Several tissue-engineering techniques to mimic the complex geometry of the meniscus have been employed. Of these, a self-assembly, scaff...
متن کاملThe Effect of Exercise, Ozone, and Mesenchymal Stem Cells Therapy on CB-1 and GABA Gene Expression in the Cartilage Tissue of Rats With Knee Osteoarthritis
Background: Studies have reported the beneficial effects of exercise, ozone therapy, and stem cell therapy for the treatment of knee osteoarthritis. Objectives: To reduce the duration of the treatment, we decided to investigate the synergistic effects of Endurance Training (ET), ozone therapy, and mesenchymal stem cell (MSCs) therapy separately or in combination on the cannabinoid receptors 1...
متن کاملBiomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells.
Central to understanding mechanotransduction in the knee meniscus is the characterization of meniscus cell mechanics. In addition to biochemical and geometric differences, the inner and outer regions of the meniscus contain cells that are distinct in morphology and phenotype. This study investigated the regional variation in meniscus cell mechanics in comparison with articular chondrocytes and ...
متن کاملMultilayered silk scaffolds for meniscus tissue engineering.
Removal of injured/damaged meniscus, a vital fibrocartilaginous load-bearing tissue, impairs normal knee function and predisposes patients to osteoarthritis. Meniscus tissue engineering solution is one option to improve outcomes and relieve pain. In an attempt to fabricate knee meniscus grafts three layered wedge shaped silk meniscal scaffold system was engineered to mimic native meniscus archi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2012